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Abstract
A covariant approach to the conformal property associated with Moyal–Lax
operators is given. By identifying the conformal covariance with the second
Gelfand–Dickey flow, we covariantize Moyal–Lax operators to construct the
primary fields of one-parameter deformation of classical W -algebras.

PACS numbers: 02.30.Ik, 11.10.Ef, 02.20.Tw

1. Introduction

Recently, there has been a great deal of interest in studying the Moyal deformation of the
KdV equations in variant ways, such as Lax and/or Hamiltonian formulations [1–5], the
zero-curvature formulation [6], Bäcklund transformation [7] and classical Virasoro and W -
algebras [3, 4]. In these formulations, the ordinary (pseudo-) differential Lax operator L =∑

i ui(x)∂i is replaced by (pseudo-) differential symbols M(x, p), the formal Laurent series
in p, which obey a noncommutative but associative algebra with respect to the �-product [8]
defined by

M(x, p) � N(x, p) =
∞∑

s=0

θs

s!

s∑
j=0

(−1)j
(

s

j

)
(∂j

x ∂s−j
p M)(∂s−j

x ∂j
pN), (1.1)

where θ is a dimensionless parameter characterizing the strength of the deformation. On the
other hand, by (1.1), the ordinary commutator is thus taken over by the Moyal bracket [9]

{M(x, p), N(x, p)}θ = M � N − N � M

2θ
, (1.2)

that possesses the anti-symmetry, bi-linearity and Jacobi identity. The Moyal bracket (1.2)
can be viewed as the higher-order derivative (or dispersive) generalization of the canonical
Poisson bracket since it recovers the canonical Poisson bracket in the limit θ → 0, namely,
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limθ→0{M, N}θ = ∂pM∂xN − ∂xM∂pN . It turns out that the Moyal formulation of Lax
equations reduces to dispersionless Lax equations [10–14] in this limit.

In our previous work [3] we studied the W -algebraic structure associated with the Moyal
formulation of the KdV equations. We worked out the Poisson brackets of the second
Gelfand–Dickey (GD) structure [15,16] defined by the �-product and obtained a one-parameter
deformation of the classical Wn-algebra including a Virasoro subalgebra with central charge
θ2(n3 − n)/3. In this work, we would like to investigate further the W -algebraic structure
from the point of view of conformal covariance. We shall follow the approach developed by
Di Francesco, Itzykson and Zuber (DIZ) [17] to covariantize the Moyal–Lax operators [1, 4]
and identify the underlying primary fields in a systematic way.

This paper is organized as follows. In section 2, we recall the Moyal–Lax formulation of
the KdV equations using psuedo-differential symbols with respect to the �-product. We then
introduce the second GD structure defined by the Moyal bracket and show that it indeed provides
the Hamiltonian structure for the Moyal-type Lax equations. In section 3, the diffeomorphism
(S1) is defined and the conformal transformation of the Moyal–Lax operators is investigated.
Then, in section 4, we show that the infinitesimal diffeomorphism flow defined by conformal
covariance is equivalent to that of the Hamiltonian flow defined by the second GD structure.
This enables us to define the primary fields of the diffeomorphism. Following DIZ, in section 5,
we systematically covariantize the Moyal–Lax operator to decompose the coefficient functions
of the Lax operator into the conformal primary fields which satisfy a one-parameter deformation
of the classical Wn-algebra including a Virasoro subalgebra. In section 6 the covariantization
is generalized to psuedo-differential symbols to construct additional primary fields. Section 7
is devoted to the conclusions and discussion.

2. Lax equations and Hamiltonian structures

For the differential symbol L = pn +
∑n

i=1 ui � pn−i with coefficients ui depending on an
infinite set of variables x ≡ t1, t2, t3, . . . one can define the Lax equations [1, 4]

∂L

∂tk
= {(L1/n�)k+, L}θ , (L1/n�)k+ = (L1/n � L1/n � · · · � L1/n︸ ︷︷ ︸

k

)+,

= {L, (L1/n�)k−}θ , (2.1)

where L1/n = p +
∑∞

i=0 ai � p−i is the nth root of L in such a way that L = (L1/n�)n and
(A)+/− refer to the non-negative/negative powers in p of the pseudo-differential symbol A.
Note that the evolution equation for u1 is trivial since the highest order in p on the right-hand
side of the Lax equations (2.1) is n − 2 due to the definition of the Moyal bracket, and hence
one can drop u1 from the Lax formulation. However, we shall see that this is not the case for
the Hamiltonian formulation.

Next let us formulate the Lax equations (2.1) in terms of Hamiltonian structure. For the
functionals F [L] and G[L] we define the second GD bracket [16] with respect to the �-product
as

{F, G}2 = tr [J (2)(dLF ) � dLG] =
∫

res [J (2)(dLF ) � dLG], (2.2)

where res (A) = a−1 and tr(A) = ∫
res (A) denote the residue and trace of A = ∑

i ai � pi ,
and J (2) is the Adler map [18] defined by

J (2)(dLF ) = {L, dLF }θ+ � L − {L, (dLF � L)+}θ ,
= {L, (dLF � L)−}θ − {L, dLF }θ− � L, (2.3)
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with dLF ≡ δF/δL = ∑n
i=1 p−n+i−1 � δF/δui . The bracket defined by J (2) is indeed

Hamiltonian since {F, G}2 = −{G, F }2 due to the cyclic property of the trace and the Jacobi
identity can be verified [7] by the Kupershmidt–Wilson (KW) theorem [19]. Form (2.3) J (2)(X)

is linear in X and has order at most n − 1. One can use the standard Dirac procedure [17] to
get rid of u1 so that

Ĵ (2)(X) = {L, X}θ+ � L − {L, (X � L)+}θ +
1

n

{
L,

∫ x

res {L, X}θ
}

θ

(2.4)

or, in components, Ĵ (2)(X) = ∑n
i,j=2(Ĵ

(2)
ij ·xj )�pn−i , where Ĵ

(2)
ij are differential operators, and

hence the reduced Poisson brackets for ui can be expressed as {ui(x), uj (y)}D2 = Ĵ
(2)
ij ·δ(x−y).

From the reduced GD brackets (2.4) the Hamiltonian flows can be expressed as
∂L

∂tk
= {L, Hk}D2 = Ĵ (2)(dLHk), (2.5)

where the Hamiltonians Hk are defined by

Hk = n

k

∫
res (L1/n�)k. (2.6)

Using (2.6) and the fact dLHk = (L1/n�)k−n
− mod p−n it is straightforward to show that the

Hamiltonian flows (2.5) are equivalent to the Lax equations (2.1).

3. Diff (S1) and conformal covariance

A function f (x) is a primary field with conformal weight h if under the diffeomorphism
x → t (x) it transforms as

f (x) → f̃ (t) = φ−hf (x) = φ−h � f (x), (3.1)

where φ(x) ≡ dt (x)/dx. We denote by Fh the space of functions with weight h (or spin-h
primary fields). For a covariant operator �(x, p) that maps Fh to Fl , it transforms according
to

�̃(t, pt ) = φ−l � �(x, p) � φh, (3.2)

where pt = φ−1 � p is the conjugate momentum of t with respect to the Moyal bracket, i.e.
{pt , t}θ = 1, and has an inverse p−1

t = p−1 � φ.
Let us treat the Lax operator Ln(x, p) = pn + u2(x) � pn−2 + · · · + un(x) as a covariant

operator such that Ln(x, p) : Fh → Fl . The corresponding weights h and l have to be
determined from the transformation law:

L̃n(t, pt ) = φ−l � Ln(x) � φh,

= (pt�)
n + ũ2(t) � (pt�)

n−2 + · · · + ũn(t). (3.3)

We note that pt = φ−1 � p = (
√

φ)−1 � φ−1p �
√

φ, which, by induction, gives

(pt�)
k = 1√

φ
�

[
φ−kpk +

θ2fk

φk
pk−2 + · · ·

]
�

√
φ, (3.4)

with

fk = −k(k − 1)

2

(
φ′

φ

)2

− k(k − 1)(k − 2)

6

φ′′

φ
.

Substituting (3.4) into (3.3) we have h = −(n − 1)/2, l = (n + 1)/2 and u2(x) transforms
like an anomalous spin-2 primary field

ũ2(t) = φ−2u2(x) +
θ2(n3 − n)

3
{{x, t (x)}}, (3.5)
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where {{x, t (x)}} is the Schwarzian derivative defined by

{{x, t (x)}} =
(

d3x/dt3

dx/dt

)
−

(
d2x/dt2

dx/dt

)2

= φ′′

φ3
− 3

2

(
φ′

φ2

)2

. (3.6)

Equation (3.5) indicates that u2 can be viewed as the generator of the classical Virasoro algebra
with central charge cn,θ = θ2(n3 − n)/3.

4. Virasoro flows as Hamiltonian flows

As shown in the previous section, is quite difficult to obtain the transformation laws for
ui>2 under the finite diffeomorphism. However it is possible to investigate the infinitesimal
transformations of ui . For an infinitesimal diffeomorphism x → t (x) � x − ε(x) we have
φ(x) � 1 − ε′(x) and pt = p + {p, ε}θ � p. In particular, it can be easily proved by induction
that (pt�)

i = pi + {pi, ε}θ � p. Hence from (3.3) we have

L̃n(t) =
∑

i

(ui(x) − ε(x)u′
i (x) + δεui(x)) � (pi + {pi, ε}θ � p),

= Ln(x) + {Ln(x), ε(x)}θ � p − ε(x) � L′
n(x) + δεLn(x),

=
(

1 +
n + 1

2
ε′(x)

)
� Ln(x) �

(
1 +

n − 1

2
ε′(x)

)
,

= Ln(x) +
n + 1

2
ε′(x) � Ln(x) +

n − 1

2
Ln(x) � ε′(x),

which leads to the infinitesimal change of the Lax operator

δεLn(x) = n + 1

2
ε′(x) � Ln(x) +

n − 1

2
Ln(x) � ε′(x)

− {Ln(x), ε(x)}θ � p + ε(x) � {p, Ln(x)}θ . (4.1)

Next let us consider the Hamiltonian flow generated by the Hamiltonian H = ∫
ε(x)u2(x) dx.

From the second GD structure (2.4) and Hamiltonian flow (2.5) we have

δGDLn(x) = {Ln(x), X}θ � Ln(x) − {Ln(x), (X � Ln(x))+}θ
+

1

n

{
Ln(x),

∫ x

res {Ln(x), X}θ
}

θ

,

where X ≡ δH/δL = p−n+1 � ε(x). Simple algebra shows that

(Ln � X)+ = p � ε,

(X � Ln)+ = ε � p − 2θ(n − 1)ε′,
1

n

{
Ln,

∫ x

res {Ln, X}θ
}

θ

= −n − 1

2
(Ln � ε′ − ε′ � Ln),

which implies

δGDLn = 1

2θ
[p � ε � Ln − Ln � (ε � p − 2θ(n − 1)ε′)] − n − 1

2
(Ln � ε′ − ε′ � Ln),

= δεLn,

as desired. Comparing the two sides of (4.1) we obtain the infinitesimal variations of uk

(2 � k � n) as

δεuk = u′
kε + kukε

′ +
(2θ)k(k − 1)

2

(
n + 1

k + 1

)
ε(k+1)

+
k−1∑
i=2

(2θ)k−i

[
n − 1

2

(
n − i

k − i

)
−

(
n − i

k − i + 1

)]
uiε

(k−i+1), (4.2)



Conformal covariantization of Moyal–Lax operators 4379

where
(

n

m

)
are the standard binomial coefficients with 0 � m � n. Let us list the first few δuk:

δεu2 = u′
2ε + 2u2ε

′ +
θ2(n3 − n)

3
ε′′′,

δεu3 = u′
3ε + 3u3ε

′ + 2θ(n − 2)u2ε
′′ +

θ3(n3 − n)(n − 2)

3
ε(4),

δεu4 = u′
4ε + 4u4ε

′ + 3θ(n − 3)u3ε
′′ +

θ2(n − 2)(n − 3)(n + 5)

3
u2ε

′′′

+
θ4(n − 2)(n − 3)(n3 − n)

5
ε(5),

δεu5 = u′
5ε + 5u5ε

′ + 4θ(n − 4)u4ε
′′ +

θ2(n − 3)(n − 4)(n + 7)

3
u3ε

′′′

+
θ3(n − 2)(n − 3)(n − 4)(n + 3)

3
u2ε

(4)

+
4θ5(n − 2)(n − 3)(n − 4)(n3 − n)

45
ε(6),

(4.3)

etc. The first equation in (4.3) is just the infinitesimal version of (3.5), which, together with the
Hamiltonian flow δεu2(x) = {u2(x), H }D2 = ∫ {u2(x), u2(y)}D2 ε(y) dy implies the classical
Virasoro algebra

{u2(x), u2(y)}D2 = [cn,θ ∂
3
x + 2u2∂x + u′

2]δ(x − y). (4.4)

Furthermore, it has a simple interpretation of the other relations in (4.3). We can define a new
variable wk = uk + f (ui), where f (ui) is a differential polynomial in ui<k , such that wk is a
spin-k primary field with respect to the generator u2, namely,

{wk(x), u2(y)}2 = [kwk∂x + w′
k]δ(x − y).

For instance, let w3 = u3 + αu′
2; demanding the relation δεw3 = εw′

3 + 3w3ε
′, we obtain

α = −θ(n − 2). On the other hand, let w4 = u4 + αu′
3 + βu′′

2 + γ u2
2; demanding the

relation δεw4 = εw′
4 + 4w4ε

′ we have α = −θ(n − 3), β = 2θ2(n − 2)(n − 3)/5 and
γ = −(n − 2)(n − 3)(5n + 7)/[10(n3 − n)].

In summary, we can identify the following primary fields:

w3 = u3 − θ(n − 2)u′
2,

w4 = u4 − (n − 2)(n − 3)(5n + 7)

10(n3 − n)
u2

2 − θ(n − 3)u′
3 +

2θ2(n − 2)(n − 3)

5
u′′

2,

w5 = u5 − θ(n − 4)u′
4 +

3θ2(n − 3)(n − 4)

7
u′′

3 − 2θ3(n − 2)(n − 3)(n − 4)

21
u′′′

2

+
(n − 3)(n − 4)(7n + 13)

7(n3 − n)
[θ(n − 2)u2u

′
2 − u2u3],

(4.5)

etc. To construct the primary fields wk for k > 5 we shall covariantize the Lax operator in a
systematic way.

5. Covariantizing the Lax operators

For a series of changes of variable v → x → t , the Schwarzian derivative obeys the equation

{{v, t}} =
(

dx

dt

)2

{{v, x}} + {{x, t}}, (5.1)

which, comparing with (3.5), shows that u2(x) transforms as cn,θ {{v, x}}. Define the variable
b(x) = d2v

dx2 (
dv
dx

)−1; it turns out that, for n �= −1, 0, 1 and θ �= 0,

u2(x)

cn,θ

= {{v, x}} = b′(x) − 1

2
b2(x), (5.2)
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with v being the coordinate where u2 vanishes, i.e. u2(v) = 0. It is easy to show that b(x)

transforms as an anomalous spin-1 primary field

b̃(t) = d2v

dt2

(
dv

dt

)−1

= dx

dt
b(x) +

d2x

dt2

(
dx

dt

)−1

. (5.3)

The purpose of introducing b(x) is to construct a covariant operator Dk = p−2θkb(x), which
maps Fk to Fk+1. Using Dk , the covariant operator Dl

k : Fk → Fk+l can be constructed as
Dl

k = Dk+l−1 � Dk+l−2 � · · · � Dk(l > 1).
Now, following the DIZ procedure, the Lax operator Ln can be decomposed into the sum

of the covariant operators �
(n)
k : F− n−1

2
→ F n+1

2
as

Ln = �
(n)
2 (u2) + �

(n)
3 (w3, u2) + · · · + �(n)

n (wn, u2), (5.4)

where

�
(n)
2 = Dn

− n−1
2

= [p − θ(n − 1)b(x)] � [p − θ(n − 3)b(x)] � · · · � [p + θ(n − 1)b(x)],

�
(n)
k =

n−k∑
l=0

α
(n)
k,l (D

l
k � wk) � Dn−k−l

− n−1
2

,

and the coefficients α
(n)
k,l are determined from the requirement that the Lax operator Ln depends

on u2 only through the relation (5.2). Therefore the function b(x) is defined up to the condition
(δb)′ − bδb = 0 or, equivalently, Dk+1 � δb = δb � Dk . In particular we have

δbD
l
k =

l∑
i=1

Dk+l−1 � · · · � δbDk+l−i � · · · � Dk,

=
l∑

i=1

Dk+l−1 � · · · � [−2θ(k + l − i)δb] � · · · � Dk,

= −θl(2k + l − 1)δb � Dl−1
k . (5.5)

Hence δbLn = 0 implies

δbD
n

− n−1
2

+
n∑

k=3

n−k∑
l=0

[α(n)
k,l (δbD

l
k � wk) � Dn−k−l

− n−1
2

+ α
(n)
k,l (D

l
k � wk) � δbD

n−k−l

− n−1
2

] = 0. (5.6)

From (5.5) it is easy to show that the first term in (5.6) vanishes. For those terms in summation
we obtain the recursive relation

α
(n)
k,l+1 = (k + l)(n − k − l)

(2k + l)(l + 1)
α

(n)
k,l , k � 3

which together with the normalization condition α
(n)
k,0 = 1 yields

α
(n)
k,l =

(
k+l−1

l

)(
n−k

l

)
(2k+l−1

l

) .

Let us work out the first few terms for the decomposition (5.4). A straightforward computation
yields

(Dk � wk) = 2θ(w′
k − kbwk),

(D2
k � wk) = 4θ2[w′′

k − (2k + 1)bw′
k + (k(k + 1)b2 − kb′)wk],

(D3
k � wk) = 8θ3[w′′′

k − 3(k + 1)bw′′
k − (3k + 1)b′w′

k + (3k2 + 6k + 2)b2w′
k

− k(k + 1)(k + 2)b3wk + k(3k + 4)bb′wk − kb′′wk],

(5.7)
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and

Dn

− n−1
2

= pn + u2 � pn−2 + θ(n − 2)u′
2 � pn−3

+

[
3θ2(n − 2)(n − 3)

5
u′′

2 +
(n − 2)(n − 3)(5n + 7)

10(n3 − n)
u2

2

]
� pn−4

+

[
θ(n − 2)(n − 3)(n − 4)(5n + 7)

5(n3 − n)
u2u

′
2

+
4θ3(n − 2)(n − 3)(n − 4)

15
u′′′

2

]
� pn−5 + · · · ,

Dn−3
− n−1

2
= pn−3 + 3θ(n − 3)b � pn−4

+

[
θ2(n − 3)(n − 4)(n + 7)

3
b′ − (n − 3)(n − 4)(n − 29)

6
b2

]
� pn−5 + · · · ,

Dn−4
− n−1

2
= pn−4 + 4θ(n − 4)b � pn−5 + · · · ,

Dn−5
− n−1

2
= pn−5 + · · · .

Thus

�
(n)
2 (u2) = Dn

− n−1
2

,

�
(n)
3 (w3, u2) = w3 � pn−3 + θ(n − 3)w′

3 � pn−4

+

[
4θ2(n − 3)(n − 4)

7
w′′

3 +
(n − 3)(n − 4)(7n + 13)

7(n3 − n)
u2w3

]
� pn−5 + · · · ,

�
(n)
4 (w4, u2) = w4 � pn−4 + θ(n − 4)w′

4 � pn−5 + · · · ,
�

(n)

5 (w5, u2) = w5 � pn−5 + · · · ,
which decomposes the coefficient functions ui into the primary fields

u2 = w2,

u3 = w3 + θ(n − 2)u′
2,

u4 = w4 + θ(n − 3)w′
3 +

3θ2(n − 2)(n − 3)

5
u′′

2 +
(n − 2)(n − 3)(5n + 7)

10(n3 − n)
u2

2,

u5 = w5 + θ(n − 4)w′
4 +

4θ2(n − 3)(n − 4)

7
w′′

3 +
(n − 3)(n − 4)(7n + 13)

7(n3 − n)
w3u2

+
θ(n − 2)(n − 3)(n − 4)(5n + 7)

5(n3 − n)
u2u

′
2 +

4θ3(n − 2)(n − 3)(n − 4)

15
u′′′

2 .

(5.8)

Inverting the above relation we recover the definition (4.5) of the primary fields.

6. Generalizations

In this section we would like to show that the conformal covariantization for the Lax
operator (3.3) can be extended to a more general form

�n = pn + u2 � pn−2 + · · · + un + un+1 � p−1 + un+2 � p−2 + · · · . (6.1)

It is not hard to show that, for the pseudo-differential symbol (6.1), the associated Hamiltonian
structure is defined by the reduced Adler map (2.4) as well. Due to the fact that (�n)+ and
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(�n)− are transformed independently under (3.3), the infinitesimal change of uk (2 � k � n)

is the same as (4.3), while that of un+k (k � 1), governed by (4.1), yields

δun+k = u′
n+kε + (n + k)un+kε

′ +
k−1∑
i=1

(2θ)k−i

[
n − 1

2

( −i

k − i

)
−

( −i

k − i + 1

)]
un+iε

(k−i+1),

where
(−n

m

) ≡ (−1)m
(
n+m−1

m

)
with n, m � 0, from which the following primary fields can be

defined:
wn+1 = un+1,

wn+2 = un+2 + θu′
n+1,

wn+3 = un+3 + 2θu′
n+2 +

2θ2(n + 1)

2n + 3
u′′

n+1 − 6(n + 1)

n(n − 1)(2n + 3)
u2un+1,

wn+4 = un+4 + 3θu′
n+3 +

6θ2(n + 2)

2n + 5
u′′

n+2 +
2θ3(n + 1)

2n + 5
u′′′

n+1

− 6(3n + 7)

n(n − 1)(2n + 5)
u2un+2 − 6(3n + 7)

n(n − 1)(2n + 5)
u2u

′
n+1,

(6.2)

etc. To covariantize the negative part (�n)− one can define the covariant operator D−1
k : Fk →

Fk−1 as [20]

D−1
k ≡ [Dk−1]−1 = p−1 + 2θ(k − 1)b � p−2 + · · · , (6.3)

and thus

D−l
k = [Dl

k−l]
−1 = D−1

k−l−1 � D−1
k−l · · · � D−1

k , (6.4)

with a covariant property determined by that of Dl
k−l as

D−l
k (t) = [Dl

k−l(t)]
−1 = φl−k � D−l

k (x) � φk.

Now let us decompose (�n)− as

(�n)− =
∞∑
l=1

�
(n)
n+k(wn+k, u2), (6.5)

where the covariant operator �
(n)
n+k(wn+k, u2) is linear in wn+k and is defined by

�
(n)
n+k(wn+k, u2) =

∞∑
l=0

β
(n)
n+k,l(D

l
n+k � wn+k) � D−k−l

− n−1
2

, k � 1.

The coefficients β
(n)
n+k,l can be determined in a similar manner so that (�n)− depends on u2

only through (5.2). It turns out that

β
(n)
n+k,l = (−1)l

(
k+l−1

l

)(
n+k+l−1

l

)
(2n+2k+l−1

l

) .

Following a similar procedure discussed in the previous section and comparing (6.1) with (6.5)
we obtain
un+1 = wn+1,

un+2 = wn+2 − θw′
n+1,

un+3 = wn+3 − 2θw′
n+2 +

2θ2(n + 2)

2n + 3
w′′

n+1 +
6(n + 1)

n(n − 1)(2n + 3)
u2wn+1,

un+4 = wn+4 − 3θw′
n+3 +

6θ2(n + 3)

(2n + 5)
w′′

n+2 +
6(3n + 7)

n(n − 1)(2n + 5)
u2wn+2

− 2θ3(n + 3)

(2n + 3)
w′′′

n+1 − 18θ(n + 1)

n(n − 1)(2n + 3)
(u2wn+1)

′.

(6.6)

Inverting the above equations yields (6.2) as expected.
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7. Conclusion and discussions

We have discussed the covariance of the Moyal-type Lax operator under the diffeomorphism
(S1). By comparing the infinitesimal Diff (S1) flow with the GD flow we have identified the pri-
mary fields with respect to the classical energy–momentum generator which obeys the classical
Virasoro algebra with central charge cn,θ = θ2(n3 − n)/3. We then follow the DIZ procedure
to covariantize Moyal–Lax operators and identify the primary fields in a systematic way.

A few remarks are in order. First, the wk shown above form a one-parameter deformation
of the primary fields arising from the (pseudo-)differential Lax operator. In particular, the
central charge cn,θ can be used to characterize the dispersion effect since θ → 0 corresponds
to the dispersionless limit of the Lax equation (2.1). Secondly, for θ = 1/2 the primary fields
wk recover the standard result [17, 20], while for θ = 0 (4.5) they do not directly reproduce
those results in the dispersionless limit [13] in which the coefficient functions uk are already
primary fields with respect to u2, the generator of the centreless Virasoro algebra. This is due to
the fact that the parametrization (5.2) does not work for θ = 0 and thus the associated conformal
property should be traced back to the GD structure or infinitesimal transformation (4.2).
Thirdly, in spite of covariantizing the Lax operator Ln = pn +

∑n
i=2 ui � pn−i , the conformal

property associated with the Lax operator of the form

Kn = pn + v2p
n−2 + v3p

n−3 + · · · + vn (7.1)

has been investigated [3] as well. In fact, the Lax equations defined by Kn and Ln are equivalent
up to the following isomorphism:

vj =
j∑

i=1

(−θ)j−i

(
n − i

n − j

)
u

(j−i)

i , (7.2)

which can be used to construct the primary fields associated with Kn. For instance, from (4.5)
and (7.2), the first few primary fields can be expressed as

w2 = v2,

w3 = v3,

w4 = v4 − (n − 2)(n − 3)(5n + 7)

10(n3 − n)
v2

2 − θ2(n − 2)(n − 3)

10
v′′

2 ,

which are just those primary fields obtained in [3].
Finally, based on the algebra of pseudo-differential symbols with respect to the �-product,

it would be intriguing to carry out the covariant approach for reductions, truncations and even
supersymmetrization [5] of the Lax operator (6.1) to construct the corresponding W -algebras.
Work in these directions is now in progress.

Acknowledgment

MHT thanks the National Science Council of Taiwan (grant numbers NSC 90-2112-M-194-
006) for support.

References

[1] Kupershmidt B A 1990 Lett. Math. Phys. 20 19
[2] Strachan I A B 1995 J. Phys. A: Math. Gen. 28 1967
[3] Tu M H 2001 Phys. Lett. B 508 173
[4] Das A and Popowicz Z 2001 Phys. Lett. B 510 264



4384 M-H Tu et al

[5] Das A and Popowicz Z 2001 J. Phys. A: Math. Gen. 34 6105
[6] Koikawa T 2001 Prog. Theor. Phys. 105 1045
[7] Tu M H 2001 J. Phys. A: Math. Gen. 34 L623
[8] Groenewold H 1946 Physica 12 405
[9] Moyal J E 1949 Proc. Camb. Phil. Soc. 45 90

[10] Zakharov V E 1980 Funct. Anal. Appl. 14 89
[11] Kodama Y and Gibbons J 1990 Proc. Workshop on Nonlinear and Turbulent Processes in Physics (Singapore:

World Scientific)
[12] Krichever I 1992 Commun. Math. Phys. 143 415
[13] Figueroa-O’Farrill J M and Ramos E 1992 Phys. Lett. B 282 357
[14] Takasaki K and Takebe T 1995 Rev. Math. Phys. 7 743
[15] Gelfand I M and Dickey L A 1976 Funct. Anal. Appl. 10 4
[16] Dickey L A 1991 Soliton Equations and Hamiltonian Systems (Singapore: World Scientific)
[17] Di Francesco P, Itzykson C and Zuber J B 1991 Commun. Math. Phys. 140 543
[18] Adler M 1979 Invent. Math. 50 219
[19] Kupershmidt B A and Wilson G 1981 Invent. Math. 62 403
[20] Huang W J 1994 J. Math. Phys. 35 993


